Welcome to The Art of Machine Learning (ECE 208/408, TEE 408)

Zhiyao Duan Associate Professor of ECE and CS University of Rochester

Audio Information Research (AIR) Lab

Machine Understanding of Sounds

MUSIC INFORMATION RETRIEVAL

- Music transcription, alignment
- Source separation
- Generation
- Interactive performance

SPEECH PROCESSING

- Separation and enhancement
- Verification and antispoofing
- Emotion analysis
- Diarization
- Text-to-speech
- Voice conversion

AUDIO-VISUAL PROCESSING

- Talking face generation
- Music performance analysis and generation
- Audio-visual source separation

ENVIRONMENTAL SOUND UNDERSTANDING

- Sound search by vocal imitation
- Sound event detection
- Source localization
- HRTF modeling
- Smart acoustics

What is Machine Learning?

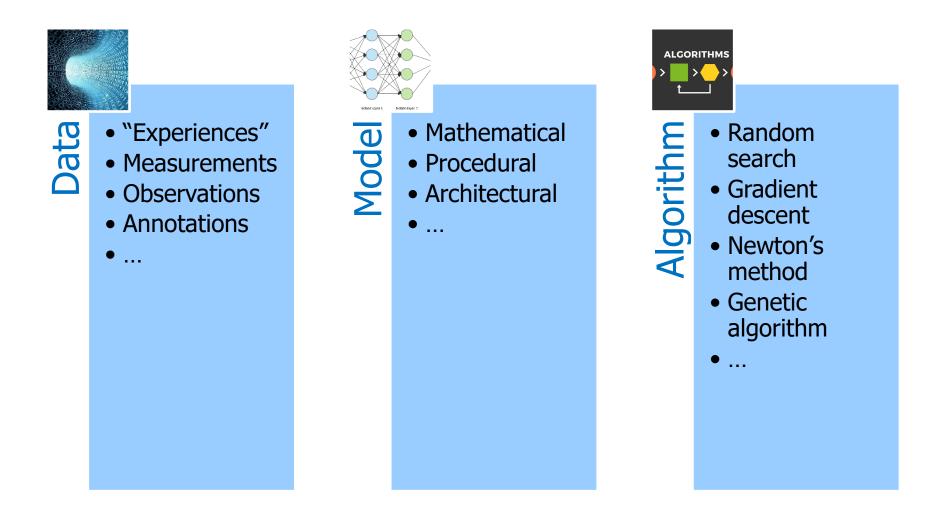
• "... the field of study that gives computers the ability to learn without being explicitly programmed."

---- Arthur Samuel, 1959

• "A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E."

---- Tom Mitchell, 1997

Three Key Elements



Machine Learning in Context

Artificial Intelligence

Systems designed to simulate human problem solving

Machine Learning

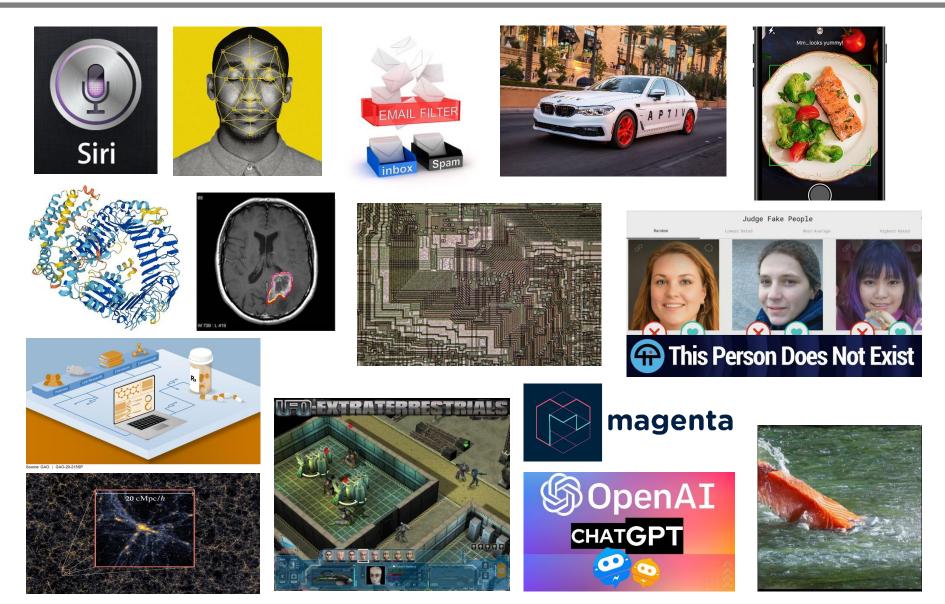
Algorithms with the ability to learn from data

Deep Learning

Multi-layer artificial neural networks

ECE 208/408 - The Art of Machine Learning - Zhiyao Duan 2024

Many Applications



ECE 208/408 - The Art of Machine Learning - Zhiyao Duan 2024

Course Topics

- Fundamental concepts of machine learning
 - Training, validation, testing
 - Overfitting, underfitting, cross validation
 - Bias/variance tradeoff, regularization, generalization
 - Supervised, semi-supervised, unsupervised, reinforcement learning
- Various machine learning models
 - Nearest neighbors, decision trees, linear models, generalized linear models, support vector machines, multi-layer perceptron, convolutional neural networks, recurrent neural networks, K-means, principal component analysis, autoencoders, dimensionality reduction, Gaussian mixture models, Q learning, etc.
- Applications of machine learning in engineering problems
 - E.g., Circuit design, salary prediction, maternal health risk assessment, lung ultrasound image classification, music generation.

Course Objectives

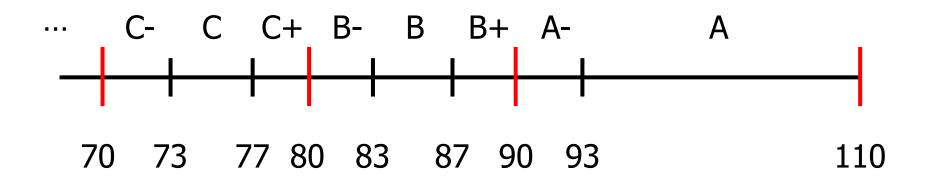
- Good understanding of fundamental concepts and various models and applications of machine learning
- Build intimate connections between theory and practice
- Gain experience in doing small-scale research projects
- Enhance capabilities of problem solving, team-working, presentation, etc.

Assignments

- Total (110 points)
 - Homework (80 points)
 - Programming oriented using Python
 - Final project (30 points)
 - Proposal (5 points)
 - Project update (5 points)
 - Final report (10 points)
 - Presentation/demo (10 points)

Grading

• For students enrolled in 408



- Students enrolled in 208 will get 10 points boost
- No extra credit
- No curve

Important Policies

• Late homework: 20% deduction / day

• Do your own work.

• Attendance is highly encouraged.

• Ask questions in class, office hours, Piazza!

Prerequisites

- General programming – E.g., ECE 114
- Linear algebra
 - E.g., MATH 165
- Preferred but not required
 - Probability and statistics, e.g., ECE 270

Textbooks

- LWLS Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, Thomas B. Schön, Machine Learning: A First Course for Engineers and Scientists, Cambridge University Press, 2022.
 <<u>PDF</u>>
- WBK Jeremy Watt, Reza Borhani, Aggelos K. Katsaggelos, Machine Learning Refined: Foundations, Algorithms, and Applications (2nd Edition), Cambridge University Press, 2020.
 <<u>Companion Website</u>>
- **Mitchell** Tom M. Mitchell, Machine Learning, McGraw-Hill Education, 1997. < <u>PDF</u>>
- GBC Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT Press.
 <<u>PDF</u>>

Tips for Studying This Course

- This is a challenging course!
- Try to come to lectures
 - Helps you grasp the main ideas quickly
- Devote enough time after class
 - Reading + implementation
 - Expect 10+ hours home study time each week
- Start doing homework early
 - Discuss with others, TAs, and me
 - Discuss on Piazza
 - Submit homework on time!

Course Information

- Course website: all materials
 - <u>https://hajim.rochester.edu/ece/sites/zduan/teaching/ece408/index.html</u>
- Piazza: Q&A + discussions
- Blackboard: announcement + assignment submission
- Instructor office hour: 3:30-4:30 PM on Wednesdays in CSB 720; additional time by appointments
- TA office hours: see course website

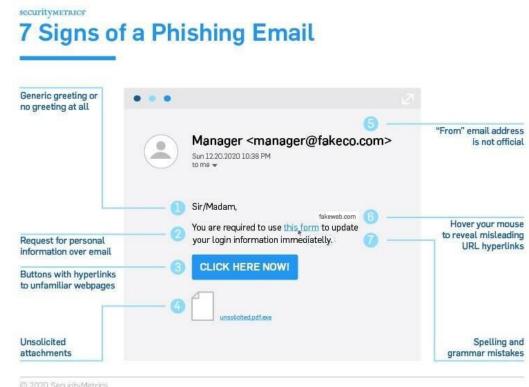
Ready? Let's Go!

Let's get to know each other first!

ECE 208/408 - The Art of Machine Learning - Zhiyao Duan 2024

Let's design a spam filter

- Engineering approach
- Step 1: look at some normal and spam email examples
- Step 2: design some features and rules for detecting spam
- Step 3: Evaluate these rules on new emails



(https://www.securitymetrics.com/blog/7-ways-recognize-phishing-email)

ECE 208/408 - The Art of Machine Learning - Zhiyao Duan 2024

Machine Learning Approach

- Step 1: Collect normal and spam emails as training data
- Step 2: Compute features that might be useful
- Step 3: Train a classifier using the training data
- Step 4: Evaluate the classifier on unseen emails
- Hand-crafted rules are replaced by trained machine learning models
 - We need: data, model, and (training) algorithm
- In deep learning, hand-crafted features are often also replaced by automatically learned features, which is called feature learning.

Data Types

- Numerical data quantitative
 - Continuous: e.g., weight, voltage
 - Discrete: e.g., guitar fret, #people in a picture
- Categorical data qualitative
 - Nominal: e.g., speech communication channel: megaphone, land phone, cellphone, walkie talkie, satellite, and VoIP
 - Ordered: e.g., sunny, partly cloudy, cloudy, flurries, snow, blizzard
 - Categorical data is often mapped to discrete numbers, but note that distances do not make sense

Data Examples

An object (or data sample, example) often has multiple dimensions

Weight (g)	Color	Shape	Taste (1-5)	Calories	Water (%)	Label
200	red	round	4	100	85	apple
140	orange	round	5	66	86	orange
120	yellow	long	5	105	75	banana
150	green	round	1	70	90	apple
110	green	long	2	100	73	banana
200	orange	round	3	85	90	orange

- Notation for a data example: (*x*, *y*), where *x* is called the feature vector, and *y* is called its label
- Matrix notation for a set of samples: (*X*, *y*)

Machine Learning Paradigms

- Supervised learning
 - Given examples (X, y), learn $f: x \mapsto y$
- Unsupervised learning
 - Given examples X, discover structures of data
- Semi-supervised learning
 - Given examples $(\mathbf{X}^l, \mathbf{y}^l)$ and \mathbf{X}^u , learn $f: \mathbf{x} \mapsto y$
- Reinforcement learning
 - Given sequences of (state, action, immediate reward): (*s*, *a*, *r*)
 - Learn optimal behavior $f: s \mapsto a$ that is good in the long run

Supervised Learning

- Given examples (X, y), learn $f: x \mapsto y$
- Classification
 - Label *y* is categorical or discrete
 - E.g., classifying fruits from their measurements
- Regression
 - Label *y* is continuous
 - E.g., predicting longevity from health status, social-economic status, etc.
- Dataset split
 - Training: used to learn the mapping f
 - Validation: used to tune hyperparameters of f
 - Test: used to evaluate performance of *f* on unseen data

Unsupervised Learning

- Given examples *X*, discover structures of data
- Density estimation: how is data distributed in the data space?
 - E.g., finding out the distribution of SAT scores in college applications
- Clustering: which data examples form a cluster?
 - E.g., sorting out types of insects
- Dimensionality reduction: find the lower dimensional subspace or manifold where the data resides
 - E.g., reducing a 4K image (8.3M pixels) to a 100-d vector for scene classification
- Data generation: sample from data distribution
 - E.g., <u>https://thispersondoesnotexist.com/</u>

Semi-Supervised Learning

- Given examples (X^l, Y^l) and X^u , learn $f: x \mapsto y$
- Same goal as supervised learning, but some training data do not have labels
 - E.g., classifying topics of text documents
 - E.g., people tagging in iPhone photos
- Why/how do the unlabeled data help?
 - Data have structures (e.g., clusters)
 - Data examples in the same cluster tend to have the same label
 - Classification boundaries tend to go through low-density regions

Reinforcement Learning

- Given sequences of (state, action, immediate reward): (*s*, *a*, *r*)
- Learn optimal behavior $f: s \mapsto a$ that is good in the long run
- Key property: rewards for an action are delayed and ambiguous
- E.g., chess, Atari, self-driving cars